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Abstract-This paper presents a special hardware implementation de- 
veloped for the computation of the specular term which is the most time 
consuming part in the Phong's illumination. In the Phong shading, the ex- 
ponentiation operation of two floating-point numbers is necessary for each 
point inside a polygon. An approximation algorithm is developed to speed 
up the exponentiation operation, and it is supported by simple hardware 
that can be easily merged into a floating-point multiplier. The exponenti- 
ation operation takes just 4 cycles in the proposed hardware while it takes 
about 100-200 cycles io conventional floating-point units. Although an 
approximation algorithm is employed for the exponentiation operation, 
the amount of error is so minimal that the difference is virtually indistin- 
guishable. 

I. INTRODUCTION 

In computer graphics, polygon meshes are widely used to 
approximate curved surfaces. These polygon meshes must be 
adequately shaded to make the underlying geometry smooth. 
Two commonly used shading methods are Gouraud shading[2] 
and Phong shading[ 11. 

The specular highlights are significant to give an object the 
visual cues about surface geometry and properties. It is well 
known that the specular highlights are completely missed or 
distorted in the Gouraud shading. However, the Phong shad- 
ing represents specular highlights very well because the Phong 
illumination equation is calculated at every pixel to include the 
specular reflection term. 

In spite of this, most 3D graphics accelerators are based 
on the Gouraud shading due to the computational cost of the 
Phong shading. Even the fastest high quality graphics work- 
stations like the recently announced InfiniteReality[3] are still 
based on the Gouraud shading. According to rapid improve- 
ments in VLSI technologies and CAD tools supporting chip 
designs, real-time Phong shading will be the next technology- 
push in computer graphics. 

The most time consuming part in the Phong illumination is 
to compute the specular term which requires the exponentia- 
tion of two floating-point numbers. It takes a very long CPU 
time to get the accurate exponentiation result. To do real- 
time Phong shading and to implement practical Phong shading 
hardware, it is essential to develop a fast algorithm that com- 
putes the specular term effectively. 

This paper describes an approximation algorithm for com- 
puting the exponentiation of two floating-point numbers. The 
proposed algorithm can be implemented easily by doing a sim- 
ple extension of floating-point multipliers. 

This paper is organized as follows. In section 11, the Phong 
illumination model and the important operations in the specu- 
lar term computation are explained. In section 111, the previous 

ways to compute the specular term are explained. In section 
IV, an efficient method is presented, and the experimental re- 
sults are shown in section v .  

11. THE PHONG ILLUMINATION MODEL 

The Phong shading is often used to shade planar polygonal 
approximated surfaces smoothly[ 11. In this shading model, the 
intensity I at an intemal point of a polygon depends on the 
reflectance of the objects under consideration. For each pixel, 
the normal vector is interpolated and the intensity is computed 
by the illumination model equation shown in Eq. 1. 

1, = IahkaOdh + Cfatt ,Ih,  [kdOdh(N. G + ksOsh($. v)sr"], 
1 

(1) 
where Zh is the light intensity for one of three color indices, 
R,G or B, and k,Od and Os are reflection coefficient, diffuse 
color and specular color, respectively. N is the normal vector 
of the current vertex and 
is the vector for the reflected light and 7 is the viewer's vector 
as shown in Fig. 1. These vectors are all normalized. 

is the i-th light source's vector. 

Fig. 1. Vectors used in the Phong illumination model. 

In Eq. 1, the first term represents the ambient intensity 
which models the intrinsic intensity and the second term is the 
diffuse intensity which represents the brightness of the object. 
The third term is the specular color which exhibits the shini- 
ness of the object. The shininess is dependent on the angle, 
a, between the reflected light _ _  vector % and the viewer's vec- 
tor 7, Le, the inner product Ri . V .  The Phong illumination 
model assumes that the maximum specular reflectance occurs 
when the angle a is zero and falls off sharply as a increases. 
This rapid falloff is approximated by (Ri . V)'- = (cos a)'rm, 
where S,, is the specular rejection exponent of a material. 
Phong introduced the specular exponent S,, for the first time 
and this model has been accepted as a very good approxima- 
tion of physical highlights. 

Figure 2 shows the type of arithmetic operations required for 
implementing the Phong illumination. The cycle counts were 
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obtained by using a general DSP processor(T1’s TMS320C67x). 
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Fig. 2. Operation counts and cycle counts required for one computation of the 
Phong illumination on TI’S TMS320C67x. 

Although the operation count of exponentiation operations 
is relatively small compared to that of additions or multipli- 
cations, the cycle count of exponentiation operations is larger 
than that of additions or multiplications. In TMS320C67x, the 
cycle count used for the exponentiation operation is over a half 
of the total cycle count. The previous approaches for the com- 
putation of the specular term are explained in the next section. 

111. PREVIOUS METHODS FOR THE SPECULAR TERM 
COMPUTATION 

The specular term in the Phong illumination model is shown 
in Eq. 2, which requires the exponentiation operation of two 
floating-point numbers. 

(2) ( F .  v ) s r m  = cozrma = 2Srm~log(cos a) 

Over the past years, there have been many works which at- 
tempted to compute the specular term fast and with small hard- 
ware. The exponentiation operation can be calculated directly 
by using the machine instructions provided that the exponen- 
tiation operation is supported in the machine as instructions 
or by using a software mathematical library. In AMD K6-I1 
or Pentium, there are two instructions which calculate log2x 
and 2” where x is a floating-point number. With these instruc- 
tions, (cos a)’rm can be computed as in Eq. 2 which takes 
about 150 cycles. Since it must be computed as many as (num- 
ber of points inside a polygon) x (number of light sources) 
times per one polygon, the cycle count consumed for the op- 
eration is huge. It can be computed using a software algo- 
rithm which is based on normal integer and bit-operation in- 
structions. For example, the pow(a, b)  function of a C library 
takes about 140 cycles. 

Bishop and Weimer proposed a Taylor series approximation 
for the inner product of vectors and forward differencing of 
quadratic polynomials[9]. Deering proposed a normal vector 
shader which interpolates the normal and the eye vectors in 
hardware[4]. In both approaches, the exponentiation of a co- 
sine value was done by the table lookup, which leads to an in- 
tolerable hardware size if a range of the exponent is large. To 
reduce the table size, a linear interpolation can be used, which 
requires 1 addition, 1 subtraction, 2 multiplications, 1 integer 
part extraction and 2 table accesses to compute an interpola- 
tion. All these operations are usually computed by floating- 

point operations. However, the linear interpolation often cre- 
ates visible Mach bandings which can only be eliminated by 
taking larger tables or higher order interpolations, leading to 
a memory-speed tradeoff. For scenes with many different ob- 
jects, the memory size is intolerable because the large table 
must be created for every object. 

The specular term calculation can be approximated by its 
Taylor or Chebyshev approximation to replace the exponentia- 
tion function by a polynomial[l l]. This technique works well 
when the specular reflection coefficient has small values. How- 
ever, as the specular reflection coefficient increases, complex 
polynomials are needed to have high accuracy. In the Phong 
shading method using angular interpolation, the specular term 
is approximated by a piecewise quadratic function [ 123 that re- 
quires an angle parameter and an arc-cosine function which are 
very computation expensive. 

This paper describes special hardware that computes the ex- 
ponentiation operation in 4 cycles with small loss of accu- 
racy. It can be easily implemented by expanding a conven- 
tional floating-point multiplier. It will be shown that the loss 
of accuracy caused by the proposed approximation algorithm 
is so small that human eyes cannot discem any differences be- 
tween the image generated by the accurate exponentiation al- 
gorithm of SPARC‘s C library and the one generated by using 
the proposed approximation algorithm. 

Iv. APPROXIMATION OF EXPONENTIATION OPERATION 

As in Eq. 2, (cos a)’- can be computed by a sequence of 
the logarithmic and exponential operations. In this implemen- 
tation, cos a is represented by the single precision floating- 
point format specified in IEEE 754[20]. IEEE 754 is the most 
widely used specification to represent floating-point numbers 
and to compute the floating-point operations. It has an 8-bit 
biased exponent and a 23-bit fractional part as shown in Fig. 
3. Also, Sr, is stored in a special register as a fixed-point num- 
ber. 

1 8  23 .*e wid ths  

Fig. 3. Single precision floating-point number format of E E E  754, where ‘e’ 
is a biased exponent with the bias of 127 and x is the fractional part of a 
mantissa. 

As shown below, log2(cosa) is approximated by a piece- 
wise linear function. The approximation is developed to cal- 
culate the logarithm value with simple operations, that can be 
implemented with small hardware. A similar approximation 
was presented in [ 191, but our approximation is much easier to 
implement than that of [ 191. 

log2 (cos a)  
= 1og2(2~( 1 + x ) )  ( N : exponent, 1 + x  : mantissa ) 

N +  1 . 2 5 ~  0 5 x < 0.25 
N + x + 0.0625 0.25 5 x < 0.75 
N +  0.75x+ 0.25 0.75 5 x < 1.0 

(3) 
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where N which is the same to “e-127” is the unbiased integer 
exponent of cos a, and x is the fractional part that does not 
include the hidden bit. In other words, x represents the lower 
23 bits with a decimal point at the 23rd bit in a single-precision 
floating-point number as shown in Fig. 4. 

3130 13 22 ” 
mantialra 
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Fig. 4. “N” and “x” fields in cos a which is represented by a single preci- 
sion floating-point number. N is an unbiased integer exponent and x is a 
fractional part. 

The addends in Eq. 3 are easy to generate : 1 . 2 5 ~  = x + 
(x  > > 2) and 0 . 7 5 ~  = x - (x  > > 2). Moreover, it is also simple 
to determine whether x < 0.25, 0.25 5 x < 0.75 or x 2 0.75. 
If 2 MSB’s of x are “1 l”, x is greater than or equal to 0.75. 
If 2 MSB’s of x are “10” or “OI”, x is between 0.25 and 0.75. 
Otherwise, x is less than 0.25. A circuit for finding the range 
ofx is shown in Fig. 5. As an example, let us consider the case 

x 4 . 2 5  m 0.25cxc0.75 xro .75  

Fig. 5 .  The generation of three signals which determine the range ofx. 

of x < 0.25. Its approximated Zog(cos a) can be calculated as 
in Eq. 4, where “A.B” means that A is the upper 8-bit integer 
part and B is the lower 23-bit fractional part. Since cos a is in 
a range of 0 and 1 if the object is visible, its exponent is always 
smaller than the bias, and the sign of the approximated value 
is negative. 

N +  1 . 2 5  
= N + x + ( x > > 2 )  
= -((bius.O- (exponent.0)) - x -  ( x > >  2)) 
= -((bias.O- ((exponent.0) + x ) )  - ( x > >  2)) 
= -((bias.O+(exponent.O + x )  + 0.000002H) 

tfx > > 2) + 0.000002H) 
= -( (bias.Of0.000004H) + (exponent.O+x) 

+ ( x > > 2 ) )  (4) 

The other cases when 0.25 5 x < 0.75 andx 2 0.75 can be for- 
mulated similarly, and the resulting equations for log2 (cos a) 
are summarized in Eq. 5, where 0.400000H and 0.100000H 
indicate 0.25 and 0.0625 of Eq. 3. 

log2 (cos a) = 

-((bias.O+ 0.000004H) t((exponent.0) + x )  
tfx >> 2)) f o r  0 5 x < 0.25 
-((bius.O+ 0.000002H- 0.lOOOOOH) 
Sf(exponent.0) + x ) )  f o r  0.25 5 x < 0.75 (5) 
-( (bius.0 + 0.000002H - 0.400000H) 
tf(exponent.0) + x )  + ( x > >  2)) 
f o r  0.75 5 x < 1.0 

When the exponent is 8-bit wide, the bias is 127 which is 7FH 
in a hexadecimal format. The (exponent.0) + x  is cos ci be- 
cause the exponent is the biased exponent of cos a and x is the 
mantissa part of cos a without the hidden bit. The equation for 
this case is shown in Eq. 6. 

log2 (cos a) z 
-( 7F.O00004H+ ( COS a )  + ( X  >> 2) ) 

- ( 7E.FO0002H + ( COS a ) ) 
f o r  O < x <  0.25 

f o r  0.25 5 x < 0.75 

for 0.75 5 x < 1.0 

(6) 
- ( 7E.CO0002H + ( COS a ) + ( X  > > 2) ) 

Three 32-bit additions are sufficient for calculating Eq. 6, 
which can be implemented using a CSA(carry save adder) and 
a 32-bit carry select adder. The CSA accepts three operands 
and generates a carry and a sum, and the final 32-bit adder 
adds the carry and the sum to generate a final 32-bit result. 
A hardware implementation for the log approximation unit is 
shown in Fig. 6, where the “const” means a constant in Eq. 5. 

,........ ............................................... .. . .. ... . . . . . . . . . . . . . . . . . . ....... .. . . . . . . . . . . . ..... . , . . . . . .... . . . . . ... . . , , .. 
7 ~ . , 0 0 0 0 1 ~  

10g(cOu 

Fig. 6.  Log approximation unit. A 32-bit CSA is used for the summation of 
three 32-bit numbers. 

The output of the log approximation unit is a 32-bit fixed 
point number and it is shifted by 7 bits to make a 24-bit fixed 
point number. Srm is saved in a special register as a fixed point 
number whose binary point is at the 16th bit. Upper 8-bit is an 
integer part and lower 16-bit is a fractional part. The approx- 
imated log( cos a)  and Srm is multiplied by the 24 x 24 multi- 
plier in a floating-point multiplier unit. When this multiplier 
is used for the floating-point multiplication, it multiplies man- 
tissas of two operands, but when used for log approximation 
it multiplies two fixed point numbers. The 24-bit multiplier is 
composed of 2 stages. The first stage is a CSA tree which has a 
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Booth encoded Wallace tree structure and the second is a carry 
select adder which adds the sum and the carry generated by 
the CSA tree. After the multiplication, the result is shifted by 
9 bits to generate a 23-bit mantissa. If the integer part of the 
result exceeds the range of an 8-bit number, an overflow oc- 
curs, and the result is saturated to the maximum number which 
the result can represent. 

The approximation equation for 2r is shown in Eq. 7. 

2s'" x log(c0s U )  

217 is also approximated by piecewise linear equations. Be- 
cause y is under l, q (= l - y )  is computed by inverting every 
bit ofy. Eq. 8 is an approximation equation for 2'1. 

1 . 0 f 0 . 7 5 ~  f o r  0 5 q < 0.25 

1.25q + 0.75 f o r  0.75 5 q < 1.0 

q + (q >> 2) + 1.000002H 

q + 0.FOOOOOH f o r  0.25 5 q < 0.75 
q + (q >> 2) + 0.COOOOOH 

217 E qf0.9375 f o r  0.25 5 q < 0.75 (8) 

for  0 5 q < 0.25 

I 
= (9) 

for  0.75 5 q < 1.0 

(10) 
1 

= 1 . 0 + h  ( O < h < 1 . 0 )  

The coefficients used in the linear approximation are eas- 
ily implemented by just shifting q and adding it with q.  It 
is needed to convert 2srmX[ug(Cus a)  to the floating-point num- 
ber which has the biased exponent and the mantissa part. The 
mantissa has the hidden bit which does not appear on the repre- 
sentation but has the implied value of 1 .O. Since all the approx- 
imated equations have the range of 1.0 < Approximated 2'1 < 
2.0 as shown in Eq. 10, we just extract the lower 23 bits to get 
the fractional part of the final floating-point number. Because 
n + 1 is an unbiased exponent, we have to add the bias to the 
integer part to obtain the exponent part. 

Fig. 7 shows a hardware implementation of 2" which is de- 
rived from Eq. 9, where n represents s,, x log(cos a) .  The 

Fig. 7. Exponentiation approximation unit. An 8-bit subtracter is used to 
make the exponent part and a 23-bit CSA is used to make the fractional 
Part. 

:.Yhg,""'"' 101 01110111 .I lolloololooloololoolloo 
1 d m  D*C 

Fig. 8. Data formats of various values in "Fastpow" 

As cos a increases, (cos increases monotonically. If 
the proposed approximation equation doesn't monotonically 
increase as cos a increases, the image using this approxima- 
tion equation may look significantly distorted. For instance, 
a brighter point in the original image can be seen as a darker 
point compared to the neighboring points. The monotonous in- 
crease of the approximation Eq. 3 and Eq. 8 used in "Fastpow" 
unit can be proved easily. Therefore, the image is almost the 
same as the original image if the error is not so large. 

V. RESULTS 

The methods to calculate the specular term can be classified 
as follows. 

constant forthe 0 5 q 5 0.25 case is not 1.000002Hbut 0.000002H 
because it is apparent that the MSB of 1 . O O O O O W  will be the 
hidden bit. 

Fig. 8 shows the data formats for cos a and S,, when 
cos a = 0.45 in decimal and S,, = 6.35. As explained before, 
log2 (cos a)  and S,, are 24-bit wide and they are multiplied to 
generate S,, x log2 (cos a)  which is 32-bit wide by shifting the 
48-bit multiplication result. 

Using the 24 x 24 multiplier in a floating-point multiplier 
unit, the circuitry for log approximation and exponential ap- 
proximation can be merged into the floating-point multiplier. 
A block diagram of the merged FP multiplier called "Fastpow" 
unit is shown in Fig. 9. The saturation logic in the exponential 
approximationunit saturates the result when cos a is 1 .O or 0.0 
and S,, is 0.0. (cos is 1.0 when S,., is 0.0, and 0.0 when 

lookup method. 

cos a is 0.0 and S,, is not 0.0. Fig. 9. "Fastpow" unit combined into a floating-point multiplier. 
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Approximation algorithm(Tay1or series, quadratic approxi- 
mation). 

Software implementation of the exponentiation. 
Hardware intemal instructions. 
With a table lookup method, about 5 12 values of cos a are 

required and the differences of adjacent cos a values are saved 
in the tables for interpolation. Besides an additional memory 
to save the tables, the table must be updated whenever a new 
object appears. By quantizing both cos a and S,, the table up- 
date can be removed, but a large sized ROM table is required. 
In this case, a 212 x 8bit ROM table is required usually. Also, 
the approximation algorithms such as Taylor series[ 1 11 or the 
quadratic approximation[ 121 requires multiplications and the 
calculation of arc-cosine values that take a lot of cycles. If in- 
temal instructions are used, about 160 cycles are used for both 
loglx and 2x instructions in Pentium or AMD’s K6. If a soft- 
ware algorithm is used, about 140-200 cycles are required in 
the C libraries of various machines. Since such large overhead 
is inevitable in the specular term calculation, high speed appli- 
cations that need many scene updates such as 3D games have 
not employed the specular reflection. 

The proposed “Fastpow” algorithm takes just 4 cycles to 
compute the exponentiation of floating-point numbers. There- 
fore, the specular term calculation is very fast compared to the 
other methods. The hardware overhead is two CSA’s, 32-bit 
adder, 23-bit adder and one 8-bit adder. The cycle count of 
“Fastpow” unit for the various operations is compared to other 
methods in Table I. We have assumed one floating-point ALU 
and one floating-point multiplier as basic hardware. The ad- 
dition, subtraction, the conversion of floating-point number to 
integer is done in the floating-point &U and the multiplica- 
tion is done in the floating-point multiplier. We assume, as in 
Pentium, the latency of such an operation is 3 and that of a di- 
vision is 39. The cycle count is roughly reduced to 1/10 of the 
others in “Fastpow” unit. 

TABLE I 
CYCLE COUNTS AND HARDWARE OVERHEAD FOR VARIOUS METHODS TO 

COMPUTE THE EXPONENTIATION FUNCTION. 

Cycles Hardware overhead 
18 + 2 x (table access) Table lookup Large ROM table 

Taylor series 68 
Quadratic fn. e 44 
Fastuow 4 CSA’s. adders 

The contour plot of absolute error is shown in Fig. 10. The 
x-axis is S,, and y-axis is cos a. The maximum absolute error 
occurs when S,, is small and cos a is close to 1.0. and the 
maximum error is 0.019217. 

To inspect the effect of error on images, we have applied our 
algorithm instead of the pow() function to compute the spec- 
ular term of the Phong shading. The images are compared in 
Fig. 11 for Srm = 10 and Fig. 12 for S,, = 60. Image (a) uses 
the specular term whose exponentiation value is calculated by 
the pow() function in Java language on a Pentium PC. Image 
(b) is generated by using the “Fastpow” approximation algo- 
rithm. As shown in the figures, image (a) and (b) containing 
12261 Phong shadedpixels don’t show any difference. 

&OW5 0 0 0 0 5 4 0 1  00014015 .OO154011 

Fig. 10. The contour plot of absolute errors of “Fastpow”. The absolute 
error was obtained by comparing with the value generated on a SPARC 
workstation. 

(a) With the specular 
term using Pentium’s 

@) With the specu- 
lar term using “Fast- 

POWO.  pow”. 

Fig. 1 I .  Two images when $, = 10. 

The error of color values, Red, Green and Blue for each 
Phong shaded pixel are plotted in Fig. 13 that shows the color 
value difference between the image (a) and (b). Each color is 
represented by an 8-bit data and thus the maximum value is 
255. The maximum error is 3 for Red, 3 for Green and 3 for 
Blue when S,, is 10. When S,, is 60, it is 2, 1 and 1. Error is 
very small compared to the maximum value 255. 

The PSNR(Peak signal-to-noise ratio) is a measure that is 
often cited as the quality of images. The calculation of PSNR 
defined in Eq. 11 is essentially the same as in the case of 
SNR except that in the nominator a hypothetical signal with 
a strength of the maximum value is used instead of the input 

(a) With the specular 
term using Pentium’s 

@) With the specular 
term using “Fastpow”. 

POW( ). 

Fig. 12. Two images when $,,, = 60. 
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(a) When Sm = 10. (b) When S, = 60. 

Fig. 13. Error of the ball image for each of R, G and B. 

signal. 

(1 1) 
(maximum signal value)2 

(mean square noise) 
PSNR = 10 log1 0 

If we use PSNR as the measure of the algorithm we pro- 
posed, maximum signal value is 255 for 24-bit RGB and noise 
signal energy is the difference of a color value generated by 
using the pow() function and the other one from the “Fast- 
pow”. A large PSNR means that there is little difference be- 
tween two images. The greater the PSNR, the closer the two 
images. The PSNR is different according to S,.,, but normally 
it is over 40dB for various values of Sr, . The PSNR of image 
(b) with respect to image (a) in Fig. 11 was 53.96dB, 61.27dB 
and 59.35dB for each R, G and B, and 68.05dB, 89.01dB and 
75.59dB for Fig. 12. 

VI. CONCLUSION 
In this paper, we proposed the “Fastpow” unit which accel- 

erates the calculation of the Phong illumination equation in 
3D graphics. The “Fastpod’unit calculates the exponentiation 
value of two floating-point numbers in 4 cycles with small loss 
of accuracy while the exponentiation takes over 150 cycles or 
requires a large ROM table in other methods. The “Fastpow” 
unit can be merged into a conventional floating-point multi- 
plier with ease and its hardware overhead is only two CSA’s 
and three adders. We have also shown that the error is so small 
that there is almost no visual difference between two images 
generated by using the pow() function and the “Fastpow” unit. 
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