
A Hardware Accelerator for the Specular Intensity of Phong Illumination Model in
3-Dimensional Graphics

Young-Su Kwon, In-Cheol Park and Chong-Min Kyung
Department of Electrical Engineering, KAIST,

Kusong-dong, Yousong-gu, Taejon 305-701, Korea
Tel : +82-42-869-3461

e-mail : { yskwon,icpark,kyung}@duo.kaist.ac.kr

Abstract-This paper presents a special hardware implementation de-
veloped for the computation of the specular term which is the most time
consuming part in the Phong's illumination. In the Phong shading, the ex-
ponentiation operation of two floating-point numbers is necessary for each
point inside a polygon. An approximation algorithm is developed to speed
up the exponentiation operation, and it is supported by simple hardware
that can be easily merged into a floating-point multiplier. The exponenti-
ation operation takes just 4 cycles in the proposed hardware while it takes
about 100-200 cycles io conventional floating-point units. Although an
approximation algorithm is employed for the exponentiation operation,
the amount of error is so minimal that the difference is virtually indistin-
guishable.

I. INTRODUCTION

In computer graphics, polygon meshes are widely used to
approximate curved surfaces. These polygon meshes must be
adequately shaded to make the underlying geometry smooth.
Two commonly used shading methods are Gouraud shading[2]
and Phong shading[11.

The specular highlights are significant to give an object the
visual cues about surface geometry and properties. It is well
known that the specular highlights are completely missed or
distorted in the Gouraud shading. However, the Phong shad-
ing represents specular highlights very well because the Phong
illumination equation is calculated at every pixel to include the
specular reflection term.

In spite of this, most 3D graphics accelerators are based
on the Gouraud shading due to the computational cost of the
Phong shading. Even the fastest high quality graphics work-
stations like the recently announced InfiniteReality[3] are still
based on the Gouraud shading. According to rapid improve-
ments in VLSI technologies and CAD tools supporting chip
designs, real-time Phong shading will be the next technology-
push in computer graphics.

The most time consuming part in the Phong illumination is
to compute the specular term which requires the exponentia-
tion of two floating-point numbers. It takes a very long CPU
time to get the accurate exponentiation result. To do real-
time Phong shading and to implement practical Phong shading
hardware, it is essential to develop a fast algorithm that com-
putes the specular term effectively.

This paper describes an approximation algorithm for com-
puting the exponentiation of two floating-point numbers. The
proposed algorithm can be implemented easily by doing a sim-
ple extension of floating-point multipliers.

This paper is organized as follows. In section 11, the Phong
illumination model and the important operations in the specu-
lar term computation are explained. In section 111, the previous

ways to compute the specular term are explained. In section
IV, an efficient method is presented, and the experimental re-
sults are shown in section v .

11. THE PHONG ILLUMINATION MODEL

The Phong shading is often used to shade planar polygonal
approximated surfaces smoothly[11. In this shading model, the
intensity I at an intemal point of a polygon depends on the
reflectance of the objects under consideration. For each pixel,
the normal vector is interpolated and the intensity is computed
by the illumination model equation shown in Eq. 1.

1, = IahkaOdh + Cfatt ,Ih, [kdOdh(N. G + ksOsh($. v)sr"],
1

(1)
where Zh is the light intensity for one of three color indices,
R,G or B, and k,Od and Os are reflection coefficient, diffuse
color and specular color, respectively. N is the normal vector
of the current vertex and
is the vector for the reflected light and 7 is the viewer's vector
as shown in Fig. 1. These vectors are all normalized.

is the i-th light source's vector.

Fig. 1. Vectors used in the Phong illumination model.

In Eq. 1, the first term represents the ambient intensity
which models the intrinsic intensity and the second term is the
diffuse intensity which represents the brightness of the object.
The third term is the specular color which exhibits the shini-
ness of the object. The shininess is dependent on the angle,
a, between the reflected light _ _ vector % and the viewer's vec-
tor 7, Le, the inner product Ri . V . The Phong illumination
model assumes that the maximum specular reflectance occurs
when the angle a is zero and falls off sharply as a increases.
This rapid falloff is approximated by (Ri . V)'- = (cos a)'rm,
where S,, is the specular rejection exponent of a material.
Phong introduced the specular exponent S,, for the first time
and this model has been accepted as a very good approxima-
tion of physical highlights.

Figure 2 shows the type of arithmetic operations required for
implementing the Phong illumination. The cycle counts were

- -

559 0-7803-5973-9/00/$10.00 02000 IEEE.

obtained by using a general DSP processor(T1’s TMS320C67x).

.dd<*”d MU! ow-. sqn ..P n

I emcm”nx - * d c y c 4 * *

Fig. 2. Operation counts and cycle counts required for one computation of the
Phong illumination on TI’S TMS320C67x.

Although the operation count of exponentiation operations
is relatively small compared to that of additions or multipli-
cations, the cycle count of exponentiation operations is larger
than that of additions or multiplications. In TMS320C67x, the
cycle count used for the exponentiation operation is over a half
of the total cycle count. The previous approaches for the com-
putation of the specular term are explained in the next section.

111. PREVIOUS METHODS FOR THE SPECULAR TERM
COMPUTATION

The specular term in the Phong illumination model is shown
in Eq. 2, which requires the exponentiation operation of two
floating-point numbers.

(2) (F . v) s r m = cozrma = 2Srm~log(cos a)

Over the past years, there have been many works which at-
tempted to compute the specular term fast and with small hard-
ware. The exponentiation operation can be calculated directly
by using the machine instructions provided that the exponen-
tiation operation is supported in the machine as instructions
or by using a software mathematical library. In AMD K6-I1
or Pentium, there are two instructions which calculate log2x
and 2” where x is a floating-point number. With these instruc-
tions, (cos a)’rm can be computed as in Eq. 2 which takes
about 150 cycles. Since it must be computed as many as (num-
ber of points inside a polygon) x (number of light sources)
times per one polygon, the cycle count consumed for the op-
eration is huge. It can be computed using a software algo-
rithm which is based on normal integer and bit-operation in-
structions. For example, the pow(a, b) function of a C library
takes about 140 cycles.

Bishop and Weimer proposed a Taylor series approximation
for the inner product of vectors and forward differencing of
quadratic polynomials[9]. Deering proposed a normal vector
shader which interpolates the normal and the eye vectors in
hardware[4]. In both approaches, the exponentiation of a co-
sine value was done by the table lookup, which leads to an in-
tolerable hardware size if a range of the exponent is large. To
reduce the table size, a linear interpolation can be used, which
requires 1 addition, 1 subtraction, 2 multiplications, 1 integer
part extraction and 2 table accesses to compute an interpola-
tion. All these operations are usually computed by floating-

point operations. However, the linear interpolation often cre-
ates visible Mach bandings which can only be eliminated by
taking larger tables or higher order interpolations, leading to
a memory-speed tradeoff. For scenes with many different ob-
jects, the memory size is intolerable because the large table
must be created for every object.

The specular term calculation can be approximated by its
Taylor or Chebyshev approximation to replace the exponentia-
tion function by a polynomial[l l]. This technique works well
when the specular reflection coefficient has small values. How-
ever, as the specular reflection coefficient increases, complex
polynomials are needed to have high accuracy. In the Phong
shading method using angular interpolation, the specular term
is approximated by a piecewise quadratic function [123 that re-
quires an angle parameter and an arc-cosine function which are
very computation expensive.

This paper describes special hardware that computes the ex-
ponentiation operation in 4 cycles with small loss of accu-
racy. It can be easily implemented by expanding a conven-
tional floating-point multiplier. It will be shown that the loss
of accuracy caused by the proposed approximation algorithm
is so small that human eyes cannot discem any differences be-
tween the image generated by the accurate exponentiation al-
gorithm of SPARC‘s C library and the one generated by using
the proposed approximation algorithm.

Iv. APPROXIMATION OF EXPONENTIATION OPERATION

As in Eq. 2, (cos a)’- can be computed by a sequence of
the logarithmic and exponential operations. In this implemen-
tation, cos a is represented by the single precision floating-
point format specified in IEEE 754[20]. IEEE 754 is the most
widely used specification to represent floating-point numbers
and to compute the floating-point operations. It has an 8-bit
biased exponent and a 23-bit fractional part as shown in Fig.
3. Also, Sr, is stored in a special register as a fixed-point num-
ber.

1 8 23 .*e wid ths

Fig. 3. Single precision floating-point number format of E E E 754, where ‘e’
is a biased exponent with the bias of 127 and x is the fractional part of a
mantissa.

As shown below, log2(cosa) is approximated by a piece-
wise linear function. The approximation is developed to cal-
culate the logarithm value with simple operations, that can be
implemented with small hardware. A similar approximation
was presented in [191, but our approximation is much easier to
implement than that of [191.

log2 (cos a)
= 1og2(2~(1 + x)) (N : exponent, 1 + x : mantissa)

N + 1 . 2 5 ~ 0 5 x < 0.25
N + x + 0.0625 0.25 5 x < 0.75
N + 0.75x+ 0.25 0.75 5 x < 1.0

(3)

560

where N which is the same to “e-127” is the unbiased integer
exponent of cos a, and x is the fractional part that does not
include the hidden bit. In other words, x represents the lower
23 bits with a decimal point at the 23rd bit in a single-precision
floating-point number as shown in Fig. 4.

3130 13 22 ”
mantialra

-bias I -7fE

N OOOOOOE

+ dac-1 p i n t

Fig. 4. “N” and “x” fields in cos a which is represented by a single preci-
sion floating-point number. N is an unbiased integer exponent and x is a
fractional part.

The addends in Eq. 3 are easy to generate : 1 . 2 5 ~ = x +
(x > > 2) and 0 . 7 5 ~ = x - (x > > 2). Moreover, it is also simple
to determine whether x < 0.25, 0.25 5 x < 0.75 or x 2 0.75.
If 2 MSB’s of x are “1 l”, x is greater than or equal to 0.75.
If 2 MSB’s of x are “10” or “OI”, x is between 0.25 and 0.75.
Otherwise, x is less than 0.25. A circuit for finding the range
ofx is shown in Fig. 5. As an example, let us consider the case

x 4 . 2 5 m 0.25cxc0.75 xro .75

Fig. 5 . The generation of three signals which determine the range ofx.

of x < 0.25. Its approximated Zog(cos a) can be calculated as
in Eq. 4, where “A.B” means that A is the upper 8-bit integer
part and B is the lower 23-bit fractional part. Since cos a is in
a range of 0 and 1 if the object is visible, its exponent is always
smaller than the bias, and the sign of the approximated value
is negative.

N + 1 . 2 5
= N + x + (x > > 2)
= -((bius.O- (exponent.0)) - x - (x > > 2))
= -((bias.O- ((exponent.0) + x)) - (x > > 2))
= -((bias.O+(exponent.O + x) + 0.000002H)

tfx > > 2) + 0.000002H)
= -((bias.Of0.000004H) + (exponent.O+x)

+ (x > > 2)) (4)

The other cases when 0.25 5 x < 0.75 andx 2 0.75 can be for-
mulated similarly, and the resulting equations for log2 (cos a)
are summarized in Eq. 5, where 0.400000H and 0.100000H
indicate 0.25 and 0.0625 of Eq. 3.

log2 (cos a) =

-((bias.O+ 0.000004H) t((exponent.0) + x)
tfx >> 2)) f o r 0 5 x < 0.25
-((bius.O+ 0.000002H- 0.lOOOOOH)
Sf(exponent.0) + x)) f o r 0.25 5 x < 0.75 (5)
-((bius.0 + 0.000002H - 0.400000H)
tf(exponent.0) + x) + (x > > 2))
f o r 0.75 5 x < 1.0

When the exponent is 8-bit wide, the bias is 127 which is 7FH
in a hexadecimal format. The (exponent.0) + x is cos ci be-
cause the exponent is the biased exponent of cos a and x is the
mantissa part of cos a without the hidden bit. The equation for
this case is shown in Eq. 6.

log2 (cos a) z
-(7F.O00004H+ (COS a) + (X >> 2))

- (7E.FO0002H + (COS a))
f o r O < x < 0.25

f o r 0.25 5 x < 0.75

for 0.75 5 x < 1.0

(6)
- (7E.CO0002H + (COS a) + (X > > 2))

Three 32-bit additions are sufficient for calculating Eq. 6,
which can be implemented using a CSA(carry save adder) and
a 32-bit carry select adder. The CSA accepts three operands
and generates a carry and a sum, and the final 32-bit adder
adds the carry and the sum to generate a final 32-bit result.
A hardware implementation for the log approximation unit is
shown in Fig. 6, where the “const” means a constant in Eq. 5.

,........ , , , ..
7 ~ . , 0 0 0 0 1 ~

10g(cOu

Fig. 6. Log approximation unit. A 32-bit CSA is used for the summation of
three 32-bit numbers.

The output of the log approximation unit is a 32-bit fixed
point number and it is shifted by 7 bits to make a 24-bit fixed
point number. Srm is saved in a special register as a fixed point
number whose binary point is at the 16th bit. Upper 8-bit is an
integer part and lower 16-bit is a fractional part. The approx-
imated log(cos a) and Srm is multiplied by the 24 x 24 multi-
plier in a floating-point multiplier unit. When this multiplier
is used for the floating-point multiplication, it multiplies man-
tissas of two operands, but when used for log approximation
it multiplies two fixed point numbers. The 24-bit multiplier is
composed of 2 stages. The first stage is a CSA tree which has a

561

Booth encoded Wallace tree structure and the second is a carry
select adder which adds the sum and the carry generated by
the CSA tree. After the multiplication, the result is shifted by
9 bits to generate a 23-bit mantissa. If the integer part of the
result exceeds the range of an 8-bit number, an overflow oc-
curs, and the result is saturated to the maximum number which
the result can represent.

The approximation equation for 2r is shown in Eq. 7.

2s'" x log(c0s U)

217 is also approximated by piecewise linear equations. Be-
cause y is under l, q (= l - y) is computed by inverting every
bit ofy. Eq. 8 is an approximation equation for 2'1.

1 . 0 f 0 . 7 5 ~ f o r 0 5 q < 0.25

1.25q + 0.75 f o r 0.75 5 q < 1.0

q + (q >> 2) + 1.000002H

q + 0.FOOOOOH f o r 0.25 5 q < 0.75
q + (q >> 2) + 0.COOOOOH

217 E qf0.9375 f o r 0.25 5 q < 0.75 (8)

for 0 5 q < 0.25

I
= (9)

for 0.75 5 q < 1.0

(10)
1

= 1 . 0 + h (O < h < 1 . 0)

The coefficients used in the linear approximation are eas-
ily implemented by just shifting q and adding it with q. It
is needed to convert 2srmX[ug(Cus a) to the floating-point num-
ber which has the biased exponent and the mantissa part. The
mantissa has the hidden bit which does not appear on the repre-
sentation but has the implied value of 1 .O. Since all the approx-
imated equations have the range of 1.0 < Approximated 2'1 <
2.0 as shown in Eq. 10, we just extract the lower 23 bits to get
the fractional part of the final floating-point number. Because
n + 1 is an unbiased exponent, we have to add the bias to the
integer part to obtain the exponent part.

Fig. 7 shows a hardware implementation of 2" which is de-
rived from Eq. 9, where n represents s,, x log(cos a) . The

Fig. 7. Exponentiation approximation unit. An 8-bit subtracter is used to
make the exponent part and a 23-bit CSA is used to make the fractional
Part.

:.Yhg,""'"' 101 01110111 .I lolloololooloololoolloo
1 d m D*C

Fig. 8. Data formats of various values in "Fastpow"

As cos a increases, (cos increases monotonically. If
the proposed approximation equation doesn't monotonically
increase as cos a increases, the image using this approxima-
tion equation may look significantly distorted. For instance,
a brighter point in the original image can be seen as a darker
point compared to the neighboring points. The monotonous in-
crease of the approximation Eq. 3 and Eq. 8 used in "Fastpow"
unit can be proved easily. Therefore, the image is almost the
same as the original image if the error is not so large.

V. RESULTS

The methods to calculate the specular term can be classified
as follows.

constant forthe 0 5 q 5 0.25 case is not 1.000002Hbut 0.000002H
because it is apparent that the MSB of 1 . O O O O O W will be the
hidden bit.

Fig. 8 shows the data formats for cos a and S,, when
cos a = 0.45 in decimal and S,, = 6.35. As explained before,
log2 (cos a) and S,, are 24-bit wide and they are multiplied to
generate S,, x log2 (cos a) which is 32-bit wide by shifting the
48-bit multiplication result.

Using the 24 x 24 multiplier in a floating-point multiplier
unit, the circuitry for log approximation and exponential ap-
proximation can be merged into the floating-point multiplier.
A block diagram of the merged FP multiplier called "Fastpow"
unit is shown in Fig. 9. The saturation logic in the exponential
approximationunit saturates the result when cos a is 1 .O or 0.0
and S,, is 0.0. (cos is 1.0 when S,., is 0.0, and 0.0 when

lookup method.

cos a is 0.0 and S,, is not 0.0. Fig. 9. "Fastpow" unit combined into a floating-point multiplier.

562

Approximation algorithm(Tay1or series, quadratic approxi-
mation).

Software implementation of the exponentiation.
Hardware intemal instructions.
With a table lookup method, about 5 12 values of cos a are

required and the differences of adjacent cos a values are saved
in the tables for interpolation. Besides an additional memory
to save the tables, the table must be updated whenever a new
object appears. By quantizing both cos a and S,, the table up-
date can be removed, but a large sized ROM table is required.
In this case, a 212 x 8bit ROM table is required usually. Also,
the approximation algorithms such as Taylor series[1 11 or the
quadratic approximation[121 requires multiplications and the
calculation of arc-cosine values that take a lot of cycles. If in-
temal instructions are used, about 160 cycles are used for both
loglx and 2x instructions in Pentium or AMD’s K6. If a soft-
ware algorithm is used, about 140-200 cycles are required in
the C libraries of various machines. Since such large overhead
is inevitable in the specular term calculation, high speed appli-
cations that need many scene updates such as 3D games have
not employed the specular reflection.

The proposed “Fastpow” algorithm takes just 4 cycles to
compute the exponentiation of floating-point numbers. There-
fore, the specular term calculation is very fast compared to the
other methods. The hardware overhead is two CSA’s, 32-bit
adder, 23-bit adder and one 8-bit adder. The cycle count of
“Fastpow” unit for the various operations is compared to other
methods in Table I. We have assumed one floating-point ALU
and one floating-point multiplier as basic hardware. The ad-
dition, subtraction, the conversion of floating-point number to
integer is done in the floating-point &U and the multiplica-
tion is done in the floating-point multiplier. We assume, as in
Pentium, the latency of such an operation is 3 and that of a di-
vision is 39. The cycle count is roughly reduced to 1/10 of the
others in “Fastpow” unit.

TABLE I
CYCLE COUNTS AND HARDWARE OVERHEAD FOR VARIOUS METHODS TO

COMPUTE THE EXPONENTIATION FUNCTION.

Cycles Hardware overhead
18 + 2 x (table access) Table lookup Large ROM table

Taylor series 68
Quadratic fn. e 44
Fastuow 4 CSA’s. adders

The contour plot of absolute error is shown in Fig. 10. The
x-axis is S,, and y-axis is cos a. The maximum absolute error
occurs when S,, is small and cos a is close to 1.0. and the
maximum error is 0.019217.

To inspect the effect of error on images, we have applied our
algorithm instead of the pow() function to compute the spec-
ular term of the Phong shading. The images are compared in
Fig. 11 for Srm = 10 and Fig. 12 for S,, = 60. Image (a) uses
the specular term whose exponentiation value is calculated by
the pow() function in Java language on a Pentium PC. Image
(b) is generated by using the “Fastpow” approximation algo-
rithm. As shown in the figures, image (a) and (b) containing
12261 Phong shadedpixels don’t show any difference.

&OW5 0 0 0 0 5 4 0 1 00014015 .OO154011

Fig. 10. The contour plot of absolute errors of “Fastpow”. The absolute
error was obtained by comparing with the value generated on a SPARC
workstation.

(a) With the specular
term using Pentium’s

@) With the specu-
lar term using “Fast-

POWO. pow”.

Fig. 1 I . Two images when $, = 10.

The error of color values, Red, Green and Blue for each
Phong shaded pixel are plotted in Fig. 13 that shows the color
value difference between the image (a) and (b). Each color is
represented by an 8-bit data and thus the maximum value is
255. The maximum error is 3 for Red, 3 for Green and 3 for
Blue when S,, is 10. When S,, is 60, it is 2, 1 and 1. Error is
very small compared to the maximum value 255.

The PSNR(Peak signal-to-noise ratio) is a measure that is
often cited as the quality of images. The calculation of PSNR
defined in Eq. 11 is essentially the same as in the case of
SNR except that in the nominator a hypothetical signal with
a strength of the maximum value is used instead of the input

(a) With the specular
term using Pentium’s

@) With the specular
term using “Fastpow”.

POW().

Fig. 12. Two images when $,,, = 60.

563

(a) When Sm = 10. (b) When S, = 60.

Fig. 13. Error of the ball image for each of R, G and B.

signal.

(1 1)
(maximum signal value)2

(mean square noise)
PSNR = 10 log1 0

If we use PSNR as the measure of the algorithm we pro-
posed, maximum signal value is 255 for 24-bit RGB and noise
signal energy is the difference of a color value generated by
using the pow() function and the other one from the “Fast-
pow”. A large PSNR means that there is little difference be-
tween two images. The greater the PSNR, the closer the two
images. The PSNR is different according to S,.,, but normally
it is over 40dB for various values of Sr, . The PSNR of image
(b) with respect to image (a) in Fig. 11 was 53.96dB, 61.27dB
and 59.35dB for each R, G and B, and 68.05dB, 89.01dB and
75.59dB for Fig. 12.

VI. CONCLUSION
In this paper, we proposed the “Fastpow” unit which accel-

erates the calculation of the Phong illumination equation in
3D graphics. The “Fastpod’unit calculates the exponentiation
value of two floating-point numbers in 4 cycles with small loss
of accuracy while the exponentiation takes over 150 cycles or
requires a large ROM table in other methods. The “Fastpow”
unit can be merged into a conventional floating-point multi-
plier with ease and its hardware overhead is only two CSA’s
and three adders. We have also shown that the error is so small
that there is almost no visual difference between two images
generated by using the pow() function and the “Fastpow” unit.

REFERENCE s
Bui-Tuong, Phong, “Illumination for Computer Generated Pictures,”
Communications ofACM, Vol. 18,No. 6, June 1975,pp. 311-317.
Gouraud, Henri, “Continuous Shading of Curved Surfaces,” IEEE Trans-
actions on Computers, Vol. 20, No. 6, 1971, pp. 623-628.
Montrym, Baum, Dignam and Migdal, “InfiniteReality : A Real-Time
Graphics System,” Proceedings of SIGGRAPH, 1997, pp. 293-302.
Deering, Michael, S. Winner, B.schediwy, C.Duf€y and N.Hunt, “The
Triangle Processor Normal Vector Shader : A VLSI System for High Per-
formance Graphics,” Computer Graphics , Vol. 22, No. 4, August 1988,

Deering, Michael and S. Nelson, “Leo : A System for Cost Effective 3D
Shaded Graphics,” Proceedings of SIGGRAPH, 1993, pp. 101-108.
Westin, Steven, Arvo, James and Torrance, Kenneth, “Predicting Re-
flectance Functions from Complex Surfaces,” Proceedings of SIG-

Cook, Robert and Torrance, Kenneth, “A Reflection Model for Computer
Graphics,” ACM Transactions on Graphics, Vol. 1, No. 1, 1982, pp. 7-24.
James D. Foley, Andries van Dam, Steven K.Feiner and John F.Hughes,
“Computer Graphics, Principles and Practise, Addison Weslv, 1996.

pp. 21-30.

GRAPH, 1992, pp. 255-264.

[9] Bishop. G. and Weimer. D. M, “Fast Phong Shading,” Proceedings of

[lo] Clausen. U. , “Reducing the Phong shading method,” Proceedings of
Eurographics, 1989, pp. 333-344.

[1 11 Pierre Poulin and Alain Fournier, “A Model for Anisotropic Reflection,”
Proceedings ofSIGGRAPH, 1990, pp. 273-281.

[12] Kuijk. A. M and Blake. E. H, “Faster Phong Shading via Angular Inter-
polation,’’ Computer Graphics Forum, 8, 1989, pp. 315-324.

[13] 0. Nishii et al., “A 2OOMHz 1.2W 1.4GFLOPS Microprocessor with
Graphics Operation Unit,” ISSCC Digest of Technical Papers, Feb. 1997,
pp. 402-403.

[141 Hiroshi Makino et al., ‘2 286 MHz 64-b Floating Point Multiplier with
Enhanced CG operation,” IEEE J: Solid-state Circuits, Apr. 1996, pp.

1151 J. Shipnes, “Graphicsprocessing with the 881 10 RISC microprocessor.”
in Dig. ofPapem, IEEEProc. COMPCON, ‘92, pp. 169-174.

[16] J. Grimes, “The Intel i860 64-bit Processor:A General-Puvose CPU
with 3 0 Graphics Capabilities,” IEEE Computer Graphics and Applica-
tions, Vol. 9, N o .4, July 1989, pp.85-94.

“The Geometry Engine: A VLSI Geometry System for
Graphics,” Computer Graphics(Proc. Siggraph), Vol. 16, No. 3, July

[181 Mark Segal and Kurt Akeley, “The OpenGL Graphics System : A Spec-
ification,’’ Mar. 23, 1998.

[19] M. Combet, H. Van Zonneveld and L. Verbeek, “Computation of the
Base Two Logarithm of Binaiy Numbers,” IEEE Trans. Electron. Com-
pute.,, June 1975, pp. 863-867.

[20] ‘Binaiy Floating-point Arithmetic,” IEEE Standards Board., March
1985.

SIGGRAPH, 1986, pp. 255-262.

504-512

[17] J. H. Clark,

1982, pp. 127-1 33.

564

